
REACTIONS OF SOME GRIGNARD REAGENTS WITH 2,6-DICHLOROPYRIDINE

R. KOPPANG*, A. C. RANADE** AND H. GILMAN Chemistry Department, Iowa State University, Ames, Iowa 50010 (U.S.A.) (Received October 23rd, 1969)

SUMMARY

Reaction of benzylmagnesium chloride with 2,6-dichloropyridine gave 3-benzylglutarimide. Allylmagnesium chloride with 2,6-dichloropyridine, in a 1/1 molar ratio, gave 2-allyl-6-chloropyridine; and in a 2/1 molar ratio gave 2,6-diallylpyridine.

Incidental to a study concerned with polyhaloaryl organometallic compounds, we have observed an interesting reaction between 2,6-dichloropyridine and benzylmagnesium chloride. Using a 1/1 molar ratio, the reaction of benzylmagnesium chloride in ether with 2,6-dichloropyridine in THF at 0° gave a compound, m.p. 127–128.5°, containing nitrogen but no chlorine. The IR spectrum showed a band at 3400 cm⁻¹ (NH) and a broad band at 1650–1750 cm⁻¹ (-CO–NH–CO–), while the NMR spectrum in CDCl₃ showed a signal at δ 8.5 ppm which disappeared on exchange with D₂O. Mass spectrometry indicated the molecular weight to be 203. The spectral data thus suggested that compound (I) is 3-benzylglutarimide.

Consistent with the above formulation, compound (I), on reduction with lithium aluminum hydride gave 4-benzylpiperidine, and on boiling with concentrated hydrochloric acid gave 3-benzylglutaric acid.

The interactions of Grignard reagents with aza-aromatic heterocycles such as pyridine, quinoline and acridine have been reported¹ periodically. Previous studies in this laboratory have demonstrated that the benzyl- and allyl-Grignard reagents in their reactions with these heterocycles exhibit a high order of reactivity

^{*} NATO Research Fellow through The Royal Norwegian Council for Scientific and Industrial Research. Present address: Department of Technology, Dental Faculty, University of Oslo, Oslo, Norway.

^{}** Fulbright Visiting Lecturer.

when compared to that of other Grignard reagents². Alkyl Grignard reagents³ on reaction with pyridine give small yields of mixtures of 2- and 4-alkylpyridines. But the reaction of pyridine with an alkyl halide and fresh magnesium powder has given⁴ good yields of the 4-alkylpyridine, essentially free from the 2-isomer. This interesting result indicated a mechanism different from that operating in reactions of pre-formed Grignard reagents with pyridine. Of particular interest is the reaction of benzyl Grignard reagent with pyridine. Benkeser and Holton⁵ showed that this reaction gives a mixture of the 2- and 4-benzylpyridines and not exclusively the 2- or 4-benzyl isomer as reported by previous workers^{6,7}.

Conjugate additions of Grignard reagents to aromatic systems have been well documented⁸. A conjugate addition of benzylmagnesium chloride to 2,6-dichloropyridine and subsequent hydrolysis, could give compound (I). In particular the satisfactory yield (60%) may be noted, because benzylmagnesium chloride reacted with pyridine to give the benzylpyridines in low yield⁵⁻⁷ (ca. 9%).

Compound (I) could not be isolated when the reaction mixture was allowed to come to room temperature or when ether alone was used. Reaction of benzylmagnesium chloride with 2,6-dichloropyridine in a 2/1 molar ratio gave compound (I) in low yield.

Reaction of allylmagnesium chloride with 2,6-dichloropyridine in a 1/1 molar ratio, gave 2-allyl-6-chloropyridine (56% yield), and in a 2/1 molar ratio, gave 2,6-diallylpyridine (50% yield). It may be noted that allyl Grignard reagent on reaction with pyridine has given² 4-allylpyridine in 9% yield, but with 2-bromopyridine 2-allylpyridine has been obtained in 41% yield.

Recently⁹, it was shown that the reaction of phenylmagnesium halides in THF or ether with 2-chloropyridine gave good yields of 2-pyridylmagnesium halides. However, we have not yet observed any halogen-metal exchange in the reaction of 2,6-dichloropyridine with phenylmagnesium bromide. 2,6-Dichloropyridine was recovered in 85% yield.

The reaction of benzylmagnesium chloride or allylmagnesium chloride with 2,6-dichloropyridine might involve a one-electron transfer in the first step. A radical intermediate would be formed having free spin at the 2- and 4-positions of the pyridine nucleus. For steric reasons, the benzyl radical may couple at the 4-position but the allyl radical can easily collapse in a cyclic fashion giving the 2-adduct. This could explain why these Grignard reagents react readily while alkyl Grignards do not. It could also explain how the presence of chlorine atoms makes these reactions facile.

EXPERIMENTAL

All reactions were carried out under an atmosphere of dry oxygen-free nitrogen. Tetrahydrofuran was dried over sodium, followed by distillation from sodium benzophenone ketyl. IR and NMR spectra were determined employing PE-21 infrared, and A-60 NMR spectrometers, respectively. All melting points are uncorrected. Molecular weights were determined by mass spectrometry.

Reaction of benzylmagnesium chloride with 2,6-dichloropyridine (1/1 molar ratio)

Benzylmagnesium chloride (0.1 mole) in ether was added dropwise to a solution of 2,6-dichloropyridine (14.06 g, 0.096 mole) in THF (50 ml) cooled to 0° .

After 30 min, Color Test I¹⁰ was negative. Chlorotrimethylsilane (14 ml) in ether (50 ml) was added to trap any organometallic species present, and the solution stirred for 2 h. Hydrolysis with ammonium chloride solution (100 ml) and work-up afforded a solid, which, on extraction with petroleum ether (b.p. 60–80°) gave 0.9 g of 2,6-dichloropyridine, m.p. 76–78°. The residue, on crystallization from methanol, gave 11.0 g of a crystalline solid, m.p. 127–128.5°. The IR, NMR and mass spectra indicated it to be 3-benzylglutarimide, structure (I). The yield based on 2,6-dichloropyridine consumed was 60%. (Found: C, 71.20; H, 6.46; N, 7.02; mol.wt., 203. $C_{12}H_{13}NO_2$ calcd.: C, 70.96; H, 6.45; N, 6.9%; mol.wt., 203.2.)

The hydrolysate after the reaction with chlorotrimethylsilane, showed no 2-chloropyridine which may have been formed by hydrolysis¹¹ of any 2-chloro-6-trimethylsilylpyridine.

Hydrolysis of compound (I) with concentrated hydrochloric acid

Compound (I) (2.0 g) and concentrated hydrochloric acid (20 ml) were refluxed for 4 h. The mixture was poured into ice-cold water and extracted with ether. Subsequent work-up gave a colorless oil, which on crystallization from ether/hexane, gave 0.5 g of 3-benzylglutaric acid, m.p. 104–106° (lit.^{12,13} m.p. 102° and 99–101°); mol.wt. found 222; calcd. 222.

Reduction of compound (I) with lithium aluminum hydride

Lithium aluminum hydride (0.05 mole) in ether was added with stirring to 2.7 g of compound (I) dissolved in THF (50 ml). The solution was stirred for 4 h. Hydrolysis with dilute sodium hydroxide and subsequent work-up gave 1.5 g of an amine. Distillation under reduced pressure gave 1.0 g of 4-benzylpiperidine, b.p. $150^{\circ}/17$ mm, (lit.⁷ b.p. $150-152^{\circ}/17$ mm); m.p. of its hydrochloride 170° (lit.⁷ m.p. 169°).

Reaction of benzylmagnesium chloride with 2,6-dichloropyridine (2/1 molar ratio)

Benzylmagnesium chloride (0.2 mole) in ether was added dropwise to a solution of 2,6-dichloropyridine (14.06 g, 0.096 mole) in THF (50 ml) cooled to 0°. After 30 min Color Test I was negative. The solution was stirred for 2 h. Hydrolysis with saturated aqueous ammonium chloride solution (100 ml) and subsequent work-up gave 8.0 g of a complex mixture from which 1.5 g of compound (I), m.p. $125-127^{\circ}$ was isolated.

Reaction of allylmagnesium chloride with 2,6-dichloropyridine (1/1 molar ratio)

Allylmagnesium chloride (0.1 mole) in ether (prepared by a published procedure¹⁴) was slowly added to a solution of 2,6-dichloropyridine (14.7 g, 0.1 mole) in THF (50 ml) at 0°, and the reaction mixture was stirred for 1 h. Color Test I was negative. Hydrolysis with saturated aqueous ammonium chloride and work-up gave a brown liquid. This was treated with dilute hydrochloric acid. The acid-insoluble material (1.6 g) was 2,6-dichloropyridine. The hydrochloric acid layer was made alkaline and extracted with ether to obtain, after the customary work-up, a liquid (6.2 g, 54%), b.p. 110–114°/27 mm, d_4^{20} 1.110, n_D^{20} 1.5338. (Found : N, 9.39; Cl, 23.21; mol.wt., 154. C_8H_8 CIN calcd.: N, 9.12; Cl, 23.1%; mol.wt., 153.5.) MR_D obsd. 43.1; MR_D calcd. 43.2. The identity of this compound as 2-allyl-6-chloropyridine was established on the basis of its NMR spectrum in CDCl₃, which showed a complex pattern characteristic of an allyl group¹⁵ and three aromatic protons in the region δ 6.95–7.7 ppm. Some polymeric material was also obtained in this reaction.

Reaction of allylmagnesium chloride with 2,6-dichloropyridine (2/1 molar ratio)

Allylmagnesium chloride (0.16 mole) in ether was slowly added to 2,6-dichloropyridine (11.8 g, 0.08 mole) in THF (50 ml) at 0°. After stirring for $\frac{1}{2}$ h, Color Test I was negative. The customary work-up gave a liquid (11.5 g) which on distillation afforded 2,6-diallyl pyridine (6.5 g, 50%), b.p. 110°/25 mm, $n_{\rm D}^{20}$ 1.5200, (lit.¹⁶ b.p. 103°/15 mm, $n_{\rm D}^{20}$ 1.5201). This reaction also gave some polymeric material.

ACKNOWLEDGEMENTS

This work was supported in part by the United States Air Force under Contract F33615-69-C-1046, monitored by Materials Laboratory, Directorate of Laboratories, Wright Air Development Center, Wright-Patterson AFB, Ohio. The authors are grateful to Drs. T. H. Kinstle, R. A. Benkeser, J. J. Eisch and A. F. Webb for assistance.

REFERENCES

- 1 M. S. KHARASCH AND R. REINMUTH, Grignard Reactions of Non-metallic Substances, Prentice-Hall, New York, 1954, p. 1257.
- 2 H. GILMAN, J. EISCH AND T. SODDY, J. Amer. Chem. Soc., 79 (1957) 1245.
- 3 W. VON E. DOERING AND V. Z. PASTERNAK, J. Amer. Chem. Soc., 72 (1950) 143.
- 4 D. BRYCE-SMITH, P. J. MORRIS AND B. J. WAKEFIELD, Chem. Ind. (London), (1964) 495.
- 5 R. A. BENKESER AND D. S. HOLTON, J. Amer. Chem. Soc., 73 (1951) 5861.
- 6 E. BERGMANN AND W. ROSENTHAL, J. Prakt. Chem., 135 (1932) 267.
- 7 W. L. C. VEER AND ST. GOLDSCHMIDT, Recl. Trav. Chim. Pays-Bas, 65 (1946) 793.
- 8 R. C. FUSON, Advan. Organometal. Chem., 1 (1964) 221.
- 9 H. H. PARADIES AND M. GÖRBING, Angew. Chem., 81 (1969) 293.
- 10 H. GILMAN AND F. SCHULZE, J. Amer. Chem. Soc., 47 (1925) 2002; see also H. GILMAN AND H. L. YABLUNKY, *ibid.*, 63 (1941) 839.
- 11 D. G. ANDERSON, M. A. M. BRADNEY AND D. E. WEBSTER, J. Chem. Soc., B, (1968) 450.
- 12 A. STEVENSON AND J. F. THORPE, J. Chem. Soc., 121 (1922) 1717.
- 13 D. VÖRLANDER AND E. STRUNCK, Justus Liebigs Ann. Chem., 345 (1906) 233.
- 14 H. GILMAN AND J. H. MCGLUMPHY, Bull. Soc. Chim. Fr., 43 (1928) 1325.
- 15 NMR Specie Cotalog, Vol. I and II, Varian Associates, Palo Alto, 1963.
- 16 J. P. WIBAUT AND H. BLOEMENDAL, Recl. Trav. Chim. Pays-Bas, 77 (1958) 123.

J. Organometal. Chem., 22 (1970) 1-4